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Abstract. We propose a new encryption algorithm, which uses the cyclic group of the prime roots of unity 
as its fundamental architecture. We show that the tangent values of the angles of the prime roots of unity are 
irrational, and therefore, can be used to encrypt characters in a seemingly random manner. Furthermore, we 
show that the group can be rotated while still preserving the irrationality of the tangent values. We associate 
the characters, to be encrypted, with digits in each of the irrational numbers. Breaking the proposed 
encryption algorithm amounts to a complexity of the order factorial of the prime number, p!. In particular, 
attacks can be made computationally prohibitive by choosing a large prime number. The proposed algorithm 
is illustrated for text encryption. 
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1. Introduction 
One of the first great advances in public key cryptography is the RSA algorithm, named after its 

inventors Ron Rivest, Adi Shamir and Leonard Adleman [1]. RSA is based on the prime factorization of an 
integer, which is a difficult problem for large integers given that no efficient integer factorization algorithm 
is known. The public key of the RSA consists of two integer values m and k. The private key consists of 
prime values p and q whose product equals m. The RSA encryption algorithm associates the characters in the 
message with numbers on the set 1, 2, ..., m – 1, and then groups the numbers together and raises them to the 
power k modulo m. In order to decrypt the message, it is necessary to know the prime factorization of the 
integer m as the product of the two primes p and q in the private key. With these two primes it is possible to 
find the Euler Phi function value of m and raise the transmitted group to this power to recover the kth root and 
therefore decrypt the message. Since knowledge of the prime factors of m is all that is required to decrypt 
RSA encrypted data, a hacker with the ability to find the factors of m will have all of the information 
necessary to decrypt an RSA encrypted transmission. That is why it is necessary to select p and q so that m is 
sufficiently large to make its factorization computationally difficult. Since its development, different 
versions of the RSA algorithm have been proposed [2 - 4]. Currently, RSA is widely used in electronic 
commerce protocols. 

In this paper we propose a novel encryption system which also relies on the property of prime numbers, 
but unlike the RSA algorithm, uses the prime roots of unity as its fundamental architecture. The architecture 
of the proposed encryption consists of distributing the character set over the prime divisions of a circle 
located at the prime roots of unity, as depicted in Fig. 1. We associate each character with the tangent of a 
prime root angle on the circle. We show that the advantage of using the tangent of the angle of the pth roots 
of unity is that this tangent value is irrational when p is prime (except for the identity which has no character 
associated with it). Since irrational numbers have an infinite decimal expansion and pseudorandom 
sequences can be obtained from expansion of irrational numbers [5], we can associate the characters with 
digits of the irrational number in a seemingly random manner.  
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The proposed algorithm encrypts each character by the set of digits from the irrational tangent value 
located between the Mth and Nth decimal positions. Additionally, we add a layer of encryption by rotating the 
set of characters while conserving the irrationality of the tangent values. Specifically, we show that by 
choosing a rotation angle with a rational tangent, the tangent values associated with the rotated characters 
will still be irrational. 

The private key of the proposed encryption consists of the prime number p, the rotation angle θ, and the 
integers M and N. At the receiver, the decryption will be a straightforward matching of the received 
encrypted characters to the assigned characters on the circle. We show that the blind decryption or a hacker 
attack of the proposed algorithm will require p! number of operations, which is prohibited for large values of 
primes p. 

The paper is organized as follows: in Section 2, we describe the encryption algorithm. Specifically, we 
prove the two fundamental results of this encryption: (a) the tangent values of the prime roots of unity are 
irrational numbers, and (b) the irrationality property is preserved if we rotate the unit circle by an angle with 
a rational tangent. We also provide examples of the encryption and decryption procedures. Section 3 
discusses possible attacks on the proposed algorithm, and shows that a brute force attack would require p! 
operations. Finally, Section 4 summarizes the main results of the paper, proposes future directions and 
provides possible applications of the proposed encryption. Throughout the paper, we provide reference to 
known results and limit the presentation of proofs to new contributions. The proofs of original results are 
provided in the Appendix. 

2. The Encryption Algorithm 
We consider the prime roots of unity, which are distributed over the unit circle, as in Fig. 1. The 

proposed encryption algorithm relies on the fact that the tangent values of the prime roots of unity are 
irrational. The following proposition proves this fundamental result. 

Proposition 1: Let p ≥ 3 be a prime number. Consider the non-zero angles of the pth roots of unity given by 
2

k
k

p
πθ = , k = 1, ..., p – 1. Then we have: 

2tan( )k
p
π ∈Q, k = 1, ..., p – 1                                                                                         (1) 

where tan is the tangent function and Q is the set of rational numbers. That is, the tangent values of the non-
zero angles associated with the prime roots of unity are irrational numbers. 

The irrationality property provides for an infinite number of digits, which can be used to associate 
characters with numbers in a seemingly random fashion. We further add another layer of encryption by 
rotating the unit circle by an angle θ in such a way to keep the irrationality property of the tangent values, as 
detailed in the following proposition. 

 
Fig. 1: Representation of the characters over the prime divisions of a circle located at the roots of unity (p = 29). 
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Proposition 2: Let p ≥ 3 be a prime number and β an angle of the form of an arctangent of a rational 

number, i.e., arctan( )r
q

β = , where ,r q∈N. Consider the angles of the pth roots of unity given by  2
k

k
p
πθ = ,  

k = 1, ..., p – 1. Then, we have: 
2tan( ) Qk

p
π β+ ∉ , k = 1, ..., p – 1                                                                            (2) 

Propositions 1 and 2 provide the theoretical backbone of the proposed encryption algorithm summarized 
below. 

2.1. Encryption algorithm 
1. Select a prime number p such that p > K, where K is the number of characters to be encrypted. 

2. Select the angle of rotation β  as the arctangent of a rational number, i.e., arctan( )a
b

β = , where a and 

b are integers, and such that all  tangent values 2tan( )k
p
π β+ , k = 1, ..., p – 1 are distinct. 

3. Calculate the tangent values of the rotated prime roots of unity angles as follows: 2tan( )k
p
π β+ ,        

k = 1, ..., K. 
4. Select two positive integers M and N such that N > M.   Each character is encoded by the digits of 

the irrational number, computed in step 3, between the Mth and Nth position at the right of the decimal. 
 
The private key of this encryption system is provided by the prime number p, the rotation angle β, and 

the integers M and N. Given the private key (p, β, M, N) the decryption process is accomplished according to 
the following steps. 

2.2. Decryption algorithm 

1. Compute the tangent values 2tan( )k
p
π β+ , k = 1, ..., K. 

2. Select the digits between the Mth and Nth decimal points. 
3. Match the received digits with the characters that are associated with them. 

2.3. Example 
The following example illustrates the encryption algorithm. Let p = 5, M = 5, N = 7, and 

1247arctan( )
18234

β = . Consider the character set {A, B, C, D}. Then, we have: 

2 1247tan( arctan( )) 3.98478529
5 18234

4 1247tan( arctan( )) 0.62699986
5 18234

6 1247tan( arctan( )) 0.83649441
5 18234

8 1247tan( arctan( )) 2.48603667
5 18234

π

π

π

π

+ ≈

+ ≈ −

+ ≈

+ ≈ −

 

The encrypted values of the characters are then given by A = 852, B = 998, C = 944, D = 366. Assume 
that we wish to securely transmit the message “ADC”, then we transmit the sequence “852366944”. At the 

receiver, the message is easily decrypted given the private key (p = 5, 1247arctan( )
18234

β = , M = 5, N = 7). 
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3. Attacks on the Proposed Encryption 
In this section, we discuss some of the possible attacks on the proposed algorithm. A random 

mapping attack requires p! operations. Therefore, by choosing p very large (as in the choice of m in 
RSA encryption), the random mapping attack can be computationally prohibitive. Observe that p 
can be much larger than the number of characters to be encrypted, i.e., p >> K. In this case, the 
other p – K tangent values would correspond to dummy or fake characters. 

Another attack strategy is to decipher the first M digits in each sequence knowing the digits 
between the Mth and Nth positions (which are the transmitted digits). For each character, there are 10M 
numerical sequences of length M. Therefore, there are 10Mp possible sequences of length M for all 
characters. For the two attacks to be comparable in terms of computational complexity, we must 
have p! ≈ 10Mp or M ≈ log10(p). On the other hand, we must have 10N – M ≥ p in order to guarantee 
that the tangent values between the Mth and Nth decimal positions are distinct. If we choose 10N – M ≈ 
10p, then, N – M ≈ log10(p). Hence, good choices of the parameters M and N are M ≈ log10(p) and N 
≈ 2M ≈ 2log10(p). 

4. Conclusion 
We presented a new encryption algorithm based on the prime roots of unity. We proved that the 

tangent values of the prime roots of unity are irrational numbers. Furthermore, rotation of the roots 
by any angle, with a rational tangent, preserves the irrationality of the tangent values. We encrypt 
the characters by choosing a subsequence of the decimal representation of the irrational number. 
Given that pseudo-random sequences can be generated from expansions of irrational numbers, the 
proposed algorithm applies pseudo-random sequences to encrypt the characters. A brute force 
attack on the cryptosystem results in p! operations for a prime number p. Therefore, choosing a 
large prime number renders such attacks computationally obsolete. The proposed algorithm can be 
employed for secure communication, i.e., encryption of voice and text. 

5. Appendix 

Proof 1 (Proof of Proposition 1): Consider the pth roots of unity, 
2 ki

pz x iy e
π

= + = , k = 1, ..., p – 1, which 

correspond to non-zero angles 2 k
p
πθ = , k = 1, ..., p – 1. Then tan( ) y

x
θ α= = . We have 

{ }1 ( ) 1 (1 ) 1 Im (1 ) 0p p p p pz x iy x i iα α= ⇔ + = ⇔ + = ⇒ + = ,                                                 (3) 

where Im denotes the imaginary part. From the binomial formula we have 

 
Fig. 2: Representation of the rotated four characters in Example 2.3. 
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(1 )
p

p k k

k

p
i i

k
α α

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑                                                                               (4) 

Therefore, 

{ }
1

2
2 1

1

Im (1 ) ( 1) 0.
2 1

p

p k k

k

p
i

k
α α

−

+

=

⎛ ⎞
+ = − =⎜ ⎟+⎝ ⎠

∑                                                                  (5) 

Since α = 0 is not a solution of Eq. (5) because z ≠ 1, we can divide by α and obtain 
1

2
2

0

( 1) 0.
2 1

p

k k

k

p
k

α

−

=

⎛ ⎞
− =⎜ ⎟+⎝ ⎠

∑                                                                               (6) 

Let us assume that α ∈Q and write α as an irreducible fraction s
q

α = , i.e., the greatest common divisor of s 

and q is 1. Multiplying Eq. (6) by qp–1, we obtain 
1

2
1 2 2

0

( 1) 0
2 1

p

k p k k

k

p
q s

k

−

− −

=

⎛ ⎞
− = ⇔⎜ ⎟+⎝ ⎠

∑                                                                                (7) 

1
1 3 2 12... ( 1) 0

3

p
p p pp

pq q s s
−

− − −⎛ ⎞
− + + − =⎜ ⎟
⎝ ⎠

                                                                             (8) 

Observe that all the terms in Eq. (8), except the last term, are divisible by p. Since the sum of these integers 
is zero, the last term must also be divisible by p. Therefore, sp–1 is divisible by p. Since p is prime, 

s is divisible by p. 

In particular, sp–1 is divisible by pp–1. Since p – 1 ≥ 2, sp–1 is divisible by p2. Observe also that all the terms in 
the integer-coefficient polynomial in Eq. (8) are divisible by p because all the binomial coefficients are 
divisible by p, and, for the last term, s is divisible by p. Moreover, since all the terms, except the first term, 
contain s and s is divisible by p, all terms, except the first term, are divisible by p2. Therefore, the first term 
pqp – 1 must be divisible by p2. Since p is prime, 

q is divisible by p. 

Since both s and q are divisible by p, the fraction /s q is not irreducible. This contradicts the original 

assumption that s
q

α =  is irreducible. We conclude that α = tan(θ) is irrational. 

Proof 2 (Proof of Proposition 2): Let 2
k

k
p
πθ = , k = 1, ..., p – 1. We have 

tan( ) tan( )
tan( ) .

1 tan( ) tan( )
k

k
k

θ βθ β
θ β
+

+ =
−

                                                                              (9) 

We show that if tan( )β ∈Q, then tan( )kθ β+ ∉Q for k = 1, ..., p – 1. Let tan( ) r
q

β = , where r and q are 

integers. Then 

tan( )
tan( ) .

1 tan( )

k

k

k

r
q

r
q

θ
θ β

θ

+
+ =

−
                                                                                       (10) 

Assume that tan( )kθ β+ ∈Q, i.e, tan( )k
s
n

θ β+ = , for some integers s and k. Then, from Eq. (10), we obtain 

tan( ) tan( )k k
s sr r
n nq q

θ θ− = +                                                                                          (11) 
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1 tan( ) .k
sr s r
nq n q

θ⎛ ⎞
⇔ + = −⎜ ⎟

⎝ ⎠
                                                                                    (12) 

But from Proposition 1, tan( )kθ ∉Q, k = 1, ..., p – 1. Therefore, Eq. (12) can only be true if and only if 

1 0sr
nq

+ =  and  s r
n q
=                                                                                          (13) 

s q
n r

⇔ = −  and s r
n q
=                                                                                          (14) 

2 2 :r q r q
q r

⇒ = − ⇒ = −  impossible.                                                                                        (15) 

Therefore, we conclude that tan( )kθ β+ ∉Q when tan( )β ∈Q. 
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